• Welcome to CableDataSheet, Cable and Wire Technical Consulting Service.
 

News:

You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
Tacettin İKİZ



Main Menu

Theoretical Calculation of Transfer Impedance (TI) for Copper Braided Shields

Started by Tacettin İKİZ, December 08, 2024, 06:07:55 PM

Previous topic - Next topic

Tacettin İKİZ

Theoretical Calculation of Transfer Impedance (TI) for Copper Braided Shields

Theoretical Calculation of Transfer Impedance (TI) for Copper Braided Shields

Transfer Impedance (Z_t) measures the effectiveness of a shield (e.g., a copper braid) in protecting against electromagnetic interference (EMI). It combines contributions from DC resistance, AC resistance, and leakage inductance. Below is the theoretical framework for calculating TI.

---

1. General Transfer Impedance Formula
QuoteThe general formula for Transfer Impedance is:
\[ Z_t(f) = \frac{V}{I} \, \text{(per unit length)} \]
Where:
  • V: Voltage induced inside the shield (volts)
  • I: Current applied to the shield (amperes)
  • f: Frequency (Hz)

---

2. Components of Transfer Impedance
Transfer Impedance is made up of three main contributions:
  • (a) DC Resistance (\( R_{\text{DC}} \))
    \[R_{\text{DC}} = \frac{\rho}{n \cdot A_{\text{wire}} \cdot p}\]
    Where:
    • \( \rho \): Resistivity of copper (\(1.68 \times 10^{-8} \, \Omega \cdot \text{m}\))
    • \( n \): Number of wires in the braid
    • \( A_{\text{wire}} \): Cross-sectional area of each wire (\( \pi \cdot (d_{\text{wire}}/2)^2 \))
    • \( p \): Shield coverage (percentage of shield coverage)
  • (b) AC Resistance (\( R_{\text{AC}} \))
    At higher frequencies, resistance increases due to the skin effect:
    \[R_{\text{AC}} = R_{\text{DC}} \cdot \frac{\delta}{d_{\text{wire}}} \cdot \coth\left(\frac{d_{\text{wire}}}{\delta}\right)\]
    Where:
    • \( \delta \): Skin depth (\( \delta = \sqrt{\frac{2 \rho}{\mu \cdot \omega}} \))
    • \( \mu \): Magnetic permeability of copper (\(4\pi \times 10^{-7} \, \text{H/m}\))
    • \( \omega \): Angular frequency (\( \omega = 2\pi f \))
  • (c) Leakage Inductance (\( L_{\text{leak}} \))
    Leakage inductance accounts for the magnetic field inefficiency between the braid and internal conductor:
    \[L_{\text{leak}} = \mu_0 \cdot \ln\left(\frac{D_{\text{outer}}}{D_{\text{inner}}}\right)\]
    Where:
    • \( D_{\text{outer}} \): Outer diameter of the braid
    • \( D_{\text{inner}} \): Inner diameter of the braid
    • \( \mu_0 \): Magnetic permeability of free space (\( 4\pi \times 10^{-7} \, \text{H/m} \))

---

3. Combined Formula for Transfer Impedance
The total Transfer Impedance is:
\[Z_t(f) = R_{\text{DC}} + R_{\text{AC}} + j\omega L_{\text{leak}}\]

---

4. Example Calculation
Parameters:
  • Shield coverage: \( p = 0.95 \)
  • Wire diameter: \( d_{\text{wire}} = 0.2 \, \text{mm} \)
  • Number of wires: \( n = 96 \)
  • Frequency: \( f = 10 \, \text{MHz} \)
  • Outer diameter: \( D_{\text{outer}} = 10 \, \text{mm} \)
  • Inner diameter: \( D_{\text{inner}} = 9 \, \text{mm} \)

Step 1: Calculate DC Resistance (\( R_{\text{DC}} \))
\[R_{\text{DC}} = \frac{1.68 \times 10^{-8}}{96 \cdot \pi \cdot (0.2 \times 10^{-3}/2)^2 \cdot 0.95} \approx 6.37 \, \text{m}\Omega/\text{m}\]

Step 2: Calculate Skin Depth (\( \delta \))
\[\delta = \sqrt{\frac{2 \cdot 1.68 \times 10^{-8}}{4\pi \times 10^{-7} \cdot 2\pi \cdot 10^7}} \approx 0.021 \, \text{mm}\]

Step 3: Calculate AC Resistance (\( R_{\text{AC}} \))
\[R_{\text{AC}} \approx R_{\text{DC}} \cdot \frac{\delta}{d_{\text{wire}}} = 6.37 \cdot \frac{0.021}{0.2} \approx 0.67 \, \text{m}\Omega/\text{m}\]

Step 4: Calculate Leakage Inductance (\( L_{\text{leak}} \))
\[L_{\text{leak}} = 4\pi \times 10^{-7} \cdot \ln\left(\frac{10}{9}\right) \approx 1.32 \times 10^{-7} \, \text{H/m}\]

Step 5: Calculate Inductive Contribution (\( Z_{t,\text{ind}} \))
\[Z_{t,\text{ind}} = j\omega L_{\text{leak}} = j \cdot 2\pi \cdot 10^7 \cdot 1.32 \times 10^{-7} \approx j 8.29 \, \text{m}\Omega/\text{m}\]

Step 6: Total Transfer Impedance
\[Z_t \approx 6.37 + 0.67 + j 8.29 = 7.04 + j 8.29 \, \text{m}\Omega/\text{m}\]

---

5. Summary
  • At low frequencies: \( R_{\text{DC}} \) dominates the impedance.
  • At high frequencies: Leakage inductance (\( L_{\text{leak}} \)) and skin effect (\( R_{\text{AC}} \)) dominate.
  • Proper shield geometry minimizes \( Z_t \), improving EMI performance.
You are not allowed to view links. Register or Login

Document echo ' ';