• Welcome to CableDataSheet, Cable and Wire Technical Consulting Service.
 

News:

You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
Tacettin İKİZ



Main Menu

Arrhenius Lifetime Plot: Cable Aging Test Method

Started by Tacettin İKİZ, March 07, 2025, 01:13:15 PM

Previous topic - Next topic

Tacettin İKİZ

Arrhenius Lifetime Plot: Cable Aging Test Method



1. Required Equipment and Setup
To perform a cable aging test, the following equipment is needed:

✔ Heated Ovens / Aging Chambers: To expose cables to high temperatures. 
✔ Thermocouple Sensors: To monitor real-time cable temperature. 
✔ Timer and Data Logger: To track test duration.



2. Cable Aging Test Procedure

- Step 1: Selecting Test Samples 
  - Different insulation materials are chosen (PVC, XLPE, EPR, etc.). 
  - Cables are cut into equal lengths for consistency. 

- Step 2: Defining Aging Conditions 
  - Cables are exposed to different elevated temperatures (e.g., 60°C, 90°C, 120°C). 
  - Cables are kept in the aging chamber for a specified duration: 
    - 90°C for 2000 hours 
    - 120°C for 500 hours 

- Step 3: Electrical & Mechanical Testing 
  - Tan Delta (Tan δ) Test: Measures insulation loss factor. 
  - Dielectric Strength Test: Applies high voltage to determine failure point. 
  - Mechanical Tests: Checks insulation flexibility and crack formation. 

- Step 4: Recording Failure Time 
  - The time taken for insulation to fail is noted. 
  - Example: 
    - 120°C → 500 hours 
    - 90°C → 2000 hours 
    - 60°C → Lifetime needs to be estimated. 



3. Lifetime Estimation Using Arrhenius Equation

The formula for predicting cable lifetime at lower temperatures:

ln t = ln t₀ + (Ea / RT)

Where: 
- t = Estimated cable lifetime at temperature T 
- t₀ = Known lifetime at a reference temperature 
- Ea = Activation energy (J/mol) 
- R = Gas constant (8.314 J/mol·K) 
- T = Absolute temperature in Kelvin (K) 



4. Example Calculation

Given test data: 
- 90°C → Cable lasted 2000 hours 
- 120°C → Cable lasted 500 hours 
- Find lifetime at 60°C 

- Step 1: Convert Temperature to Kelvin 
T₁ = 120 + 273.15 = 393.15K 
T₂ = 90 + 273.15 = 363.15K 
T₃ = 60 + 273.15 = 333.15K 

- Step 2: Calculate 1/T 
1/T₁ = 1 / 393.15 = 0.002544 
1/T₂ = 1 / 363.15 = 0.002754 

- Step 3: Compute Lifetime Logarithm 
ln(500) = 6.2146 
ln(2000) = 7.6009 

- Step 4: Find Activation Energy (Ea) 
Ea = (7.6009 - 6.2146) * (8.314 / (0.002754 - 0.002544)) 
Ea = 54883 J/mol 

- Step 5: Estimate Lifetime at 60°C 
ln t₃ = ln 2000 + (Ea / R) * (1/T₃ - 1/T₂) 
ln t₃ = 7.6009 + (54883 / 8.314) * (0.002998 - 0.002754) 
ln t₃ = 9.2125 
t₃ = e^9.2125 = 10000 hours 

- Final Answer: 
  - Cable lifetime at 60°C is 10,000 hours (~1.14 years). 
  - If this value is too low, insulation type or operating temperature should be adjusted.



5. Applications of Cable Aging Tests

✔ Predicting the lifetime of medium and high-voltage cables. 
✔ Evaluating the long-term reliability of underground or subsea cables. 
✔ Determining insulation resistance at different temperature conditions. 
✔ Helping manufacturers define warranty periods based on real test data. 



Conclusion

The Arrhenius method allows engineers to accelerate aging tests in controlled environments and extrapolate real-world performance. 
You are not allowed to view links. Register or Login

Document echo ' ';