• Welcome to CableDataSheet, Cable and Wire Technical Consulting Service.
 

News:

You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
You are not allowed to view links. Register or Login
Tacettin İKİZ



Main Menu

TAN δ (DELTA) Cable Testing

Started by Eadwyn ECCLESTONE, August 03, 2013, 10:16:08 AM

Previous topic - Next topic

Eadwyn ECCLESTONE



TAN δ (DELTA) Cable Testing

What Is Tan δ, Or Tan Delta?

Tan Delta, also called Loss Angle or Dissipation Factor testing, is a diagnostic method of testing cables to determine the quality of the cable insulation. This is done to try to predict the remaining life expectancy and in order to prioritize cable replacement and/or injection. It is also useful for determining what other tests may be worthwhile.

How Does It Work?

If the insulation of a cable is free from defects, like water trees, electrical trees, moisture and air pockets, etc., the cable approaches the properties of a perfect capacitor. It is very similar to a parallel plate capacitor with the conductor and the neutral being the two plates separated by the insulation material. In a perfect capacitor, the voltage and current are phase shifted 90 degrees and the current through the insulation is capacitive. If there are impurities in the insulation, like those mentioned above, the resistance of the insulation decreases, resulting in an increase in resistive current through the insulation. It is no longer a perfect capacitor. The current and voltage will no longer be shifted 90 degrees. It will be something less than 90 degrees. The extent to which the phase shift is less than 90 degrees is indicative of the level of insulation contamination, hence quality/reliability. This "Loss Angle" is measured and analyzed. Below is a representation of a cable. The tangent of the angle δ is measured. This will indicate the level of resistance in the insulation. By measuring IR/IC (opposite over adjacent – the tangent), we can determine the quality of the cable insulation. In a perfect cable, the angle would be nearly zero. An increasing angle indicates an increase in the resistive current through the insulation, meaning contamination. The greater the angle, the worse the cable.

You are not allowed to view links. Register or Login

Document echo ' ';